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Abstract. The renormalisation group equation for the q-state Potts model having the 
hierarchical interaction is investigated. A stable fixed point is found to exist when q < 3 to 
the leading order in Au = (+ -$, u being the interaction range parameter. Independent 
evidence suggests that there is no fixed point when q = 3 for all u > f. Critical exponents 
associated with the new fixed point are also obtained to the first order in Au. 

1. Introduction 

The q-state Potts model (Potts 1952) can describe various phase transitions (Fortuin 
and Kasteleyn 1972, Alexander and Yuval 1974, Mukamel et a1 1976, Aharony et aE 
1977, Domany et al 1978) but the nature of its phase transition is not fully understood. 
When the spins are represented as ( q  - 1)-dimensional vectors S,  (Domb 1974, Zia and 
Wallace 1975), the free energy as a function of the ( q  - 1)-dimensional order parameter 
(S,) has the symmetry of a hypertetrahedron. It has one cubic invariant which causes the 
transition to be discontinuous for all q > 2 in the mean-field approximation. However, 
Baxter (1973, Baxter et a1 1978) has shown in two dimensions that the transition does 
not accompany latent heat for q s 4. This poses the question as to how the order of the 
transition changes with the dimensionality d and the number of states 4. For the 
three-state Potts model in three dimensions, results obtained from the series expansion 
methods (Straley 1974, Kim and Joseph 1975, Enting and Domb 1975, Yamashita 
1979) are conflicting and are inconclusive on whether the transition is continuous or 
not. 

For the continuous-spin version of the Potts model, the Gaussian fixed point of the 
renormalisation group becomes unstable below six dimensions due to the presence of a 
cubic term in the Lagrangian. Priest and Lubensky (1976a, b) and Amit (1976) located 
a new fixed point which is stable in dimensions below 6 and obtained an E = 6- d 
expansion to second order for general q. The resulting value of the cubic (trilinear) 
coupling constant at the fixed point is proportional to [ - E / ( q  - qc)]1’2 with qc = y .  Thus 
it becomes imaginary for q > qc suggesting the absence of a fixed point. This has been 
interpreted as the absence of a continuous transition. Even when there is a stable fixed 
point, the relevance of this to the phase transition of the Potts model is not clear. 

In the present work, we conslder the Potts model which has Dyson’s hierarchical 
interaction (Dyson 1969, Baker 1972) instead of the usual nearest-neighbour 
interaction. The hierarchical interaction simulates the power-law potential decaying as 

and has the advantage that the partition functions possess a simple recursion 
relation. The interaction range parameter U plays a role similar to that of the 
r-(l+d 
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dimensionality. For the hierarchical n-vector model which has O ( n )  symmetry (Kim 
and Thompson 1978), the critical value of a which separates Gaussian from non- 
Gaussian behaviour is ;. For the hierarchical Potts model, however, it is $. Thus one 
obtains a Aa = a - f expansion which is analogous to the (6 - d) expansion. 

In § 2, we define the system and transform the renormalisation group equation of 
the hierarchical model into an equivalent but more convenient form. We then 
construct, in § 3, eigenfunctions of the linearised renormalisation group operator and 
use these to obtain the new fixed point and its critical exponents to first order in Aa. 
Finally, we discuss our results in 0 4. 

2. Rensrmdisation group transformations 

We represent spir, states of the q-state Potts model by a set of vectors which have ( q  - 1) 
components and write the Hamiltonian in the form 

N N 

i , j  = 1 i = l  

where N = 2L is the number of spins. Here the S,  have unit length and are allowed to 
point to q vertices of a ( q  - 1)-dimensional hypertetrahedron so that S i .  Sj is unity when 
they are parallel and - ( q  - l)-' otherwise. The ( q  - 1)-dimensional vector H is a 
symmetry breaking field. For the hierarchical Potts model, Jij  is chosen in such a way 
that RL has the hierarchical structure; 

with = 2('+")/2 , CT being the interaction range parameter. Then the recursive nature of 
the interaction allows us to write down the exact renormalisation group transformation 
(RGT) as (Kim and Thompson 1978) 

m 

i, * F,+1(hy) = Ir-/* 

The starting point of the iteration is 

F o ( x )  = 1 exp(Cx. si) 
S, 

(4) 

where C = 2Jp/h,  p being the inverse temperature. The vectors appearing in equa- 
tions (3) and (4) all have n = q - l components. From now on, as well as in equation (3), 
n stands for q - 1. 

We let Mij ( i  = 1,2,  . . . , q, j = 1,2,  . . . , n )  be the jth coordinate of ith vertex of the 
hypertetrahedron. Some properties of Mij are (Zia and Wallace 1975) 

Mij=o 
i = l  
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We now define 

+i and +hi are not linearly independent since 

4i=C + i = O  
i i 

due to equation ( 5 ) .  Equation (4) then becomes 

305 1 

(7) 

po(x> = j! exp( c f e x p [ ~ ( q / n ) ~ / ~ + ~ l ~ ~ ~ ( + ( x ) ) .  (10) 
i=l  j =  1 

Po(+) as defined is symmetric with regard to arbitrary exchange of its arguments. We 
show below that this symmetry property is preserved by the RGT and that any &x) can 
be written in a symmetric form in terms of +. Suppose &x) can be expressed as 

p l w  = P l ( + l ( X ) ,  * * . , +&)) (1 1) 

where Pl is some function which is invariant under any permutations of c$~’s.  From 
equations (6)  and (8), we have 

2 f. ( + i  - 4il2 = f (xi - y i )  * 
i= l  i= l  

Equation (5), then, can be written 

p l + l ( A y ) = ? r “ ’ 2 j m  -m . . .  j exp(-f. i = l  (+ i - l j l i )Z)P:(  + l , . . . , ~ q ) d x .  (12) 

We now change the integration variable 

J d x = d + 2 , .  . . ,d+q 

where J is the determinant of the n x n matrix obtained from (n/q)”’Mij by eliminating 
the first row, and can be shown to be q-’ l2 .  Since Z +i = 0 ,  equation (12) can be written 
in a symmetric form 

Thus pl+1 is also of the form of equation (1 1). Replacing the Dirac delta function by its 
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integral representation, and using equation (9), equation (13) can also be written 
m 

P ~ + ~ ( A + )  = (q/T>'/' j-, exp(- q w ~ q / 2  

ERR+, 4).p:(d4. (14) 

Equation (14), together with equation (9), is equivalent to equation (3) but is more 
convenient since the symmetry of the Potts model is manifested explicitly. If we define 

PI(+) contains all possible combinations of products of 4 ' s  except II which is identically 
zero. If the model were of O ( n )  symmetry, P r ( 4 )  would have been a function of I2 only. 
For the Potts model, we are working in a much larger parameter space. In particular the 
presence of I3 in the Potts model renders it a special symmetry property. 

3. Fixed point 

To discuss the non-Gaussian fixed point of equation (14), we first take out the Gaussian 
part from Pl. The Gaussian fixed point is 

p;  (4)  = 2 - 4 2  exp[3(1- 2 

PI(+) = PX(+)hr(2-"/'4) (17) 

h+1(2+/A) = R(+, 4)  h:(4) (18) 

(1 6) 
as can be verified by direct substitution. We thus define /I{(+) by 

to obtain RGT in terms of hr as 

where the linear operator R is defined in equation (14). Since h l ( 4 )  has an expansion of 
the form 

hr(4)=C A k l k z  

we need to calculate 

R(J/, 4 )  - I k i ( + ) I k i ( + ) .  . . . 
For example, 

R(+, 4 )  L(4)Md.J) = L(lji)L(+) + (4  + 1)4(lji) + n(q + 1)/4. 

1 2 2  -3 1 2 , 2 +  (4  + 1 1 1 2  + n(q + 1)/4. 

I, + C da,pIp (19) 

We write this in a short notation as 

In general, we have 

P 

where a, 0 denote a collection of indices. If a represents a collection of indices 
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{ k l ,  k2 ,  . . .}, we let la1 = Z i  ki. With this notation, da,p = 0 for Ip( > [al. Explicit results 
of the CI,,~'S necessary for our purpose are tabulated in appendix A. From this, we can 
construct eigenfunctions of the linear operator R($A+, 4)  (see equation (18)). For a 
model with O( n )  symmetry, they would be the generalised Laguerre polynomials (Kim 
and Thompson 1978). We find that the prescription for constructing eigenfunctions is 

D, = (- a2)1Pl-lald 4 I P (20) 
P 

and is given by equation (19). We use a convention that Do = 1. D,  then satisfies 

R($h+, 4) D d 4 )  = ($h)la'Da(+). (22) 

The inverse relation of equation (20) is 

I, = (a2)l"1-IP'd,,pDp. 
P 

We do not have a general proof for equations (20) ,  (22) and (23) but fortunately they are 
correct for all a which we need to consider for our calculation. 

This consideration leads us to expand h l ( 4 )  in terms of D,(+). Let 

h Y ( 4 )  = An( 1 +e A,(2/h) '"Da(4))  (24) 

where we have separated the constant term explicitly and the sum over a runs from D2. 
We then have, from equations (18) and (22), 

h?+1 (+) = A;( 1 +c AL@/h)"'D,(+)) 

=A;( 1 + 2  1 A,D,(+)+ 1 AApD,(+)Dp(+)) .  
a.P 

Next, we need to decompose D,DP into a linear combination of D,'s. Let 

DaDP = c ( a ;  P + YP,. (25) 
Y 

The coefficients (a;  p + y )  can be obtained using equations (20) and (23). For example, 

In appendix B, we tabulate these coefficients which are needed in this work. We find 
that (a; p -+ y )  is non-vanishing for IIal- lpI( s IyI G la1 + /PI .  We then finally arrive at 
an algebraic RGT: 

A ; ( 2 / h ) ' " l A & = A ~ ( 2 A a + E  P.Y ApAy(p; y'a)). 
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The linearised RGT around an arbitrary fixed point A: is simply given by 

A’,-A: = E  V,,,(A~-A$) (28) 
P 

where 

V ~ , P = 2 A a ( h / 2 ) ’ “ 1 ( ~ , P + E A ~ ( y ; P + a ) ) - 2 A o * A *  Y X A ; ( y ; p + O ) .  Y (29) 

For the Gaussian fixed point for which A: = 0 (a 3 2) and A8 = 1, V is diagonal and has 
eigenvalues 2 l+’a’“)’’ , la1 = 2,3 ,  . . . Therefore, the Gaussian fixed point is stable for 
0 < U < 3, and D3 becomes marginal at U = 3. For U close to f, we make an ansatz that 
A$ is small. Then, from equation (27), A?, A?, A?,2 and A$,3 are of order (AT)’ while 
(u-;)A$ is of order (A$)3. We therefore have a non-Gaussian fixed point for which 
(AT)’ is of order A u  = U - f .  Explicitly we find, to the leading order in Au, 

(AT)’ = 3-l(r+ 21’3)-3 In (2)a6q(3 - q)-l  Au, 

A: = 1 - (3; 3 + O)(AT)’, 

for a = {2}, {4}, {2,2} and {3,3}. We see that AT becomes imaginary for q > 3. 
Substituting these values into equation (29), we find that the first two eigenvalues of V 
for this fixed point are 

2113+ 2-’13(3 - q)-’q In (2) A u +  O(Au)’ 

and 1 - 3 In (2) A u t -  O(Au)’, respectively. Therefore, this new fixed point is stable for 
U > 3 and is associated with critical exponents 

1 / v  =f+qAu/2(3 -4) 

and 

y = u v  

= 1 + 9(2 - q)A0/2(3 - 4) 

to first order in Au. 

(33) 

(34) 

We also considered the d-dimensional version of the hierarchica. model where 2d 
spins are grouped together to form a block spin and h = 2(d+u)/2 (Blekher and Sinai 
1974). The result for y in this generalisation is identical to equation (34) with 
A u = ( u / ~ - $ ) .  

4. Discussion 

The hierarchical Potts model is found to have a new fixed point stable for U b f. As in 
the short-ranged continuous spin version of the Potts model, this new fixed point exists 
for q < qc where qc = 3 to the leading order. Recently, Guim and Kim (1980) studied 
equation (3) numerically for q = 3 and found that there is no temperature at which A(x)  
approaches a fixed point as 1 + CO for 3 < U < 1. This failure to observe a fixed point at 
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q = 3 is consistent with our present result. However, they also found that the high- 
temperature susceptibility diverges with the usual power-law behaviour at the critical 
temperature even though there is no fixed point. In view of this, it is difficult to relate 
the absence of a stable fixed point for q 2 3 and for CT > 3  to the absence of a continuous 
phase transition. 

In the range 0 < (T < $, where the Gaussian fixed point is stable, Guim and Kim found 
numerically that PI(+) + P6 at the critical temperature and that the critical behaviours 
are classical. Thus, the Gaussian fixed point is globally stable in the Potts model. It has 
been generally believed that the predictions of mean-field theory are correct for the 
system of high enough dimensionalities or for those having a long enough range of 
interaction (Gates and Thompson 1975). But this expectation does not hold here. 
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Appendix A. The coefficients dwp used in this work (see equation (19)) 

k / 2  

m=O 
I k  + 1 (n/q)"[k!/(k -2m)!m!4"]Ik-2m (11 =- 0, 10 = q, n = q - 1) 

Appendix B. The coefficients (a; p + y )  used in this work (see equation (25)) 

(2; 2 -3 2) = 2/aZ 
(2; 3 + 3) = 3/a2  
(2; 3 + 2 , 3 )  = 1 
(2; 4 + 2) = 3(q - l ) /qa4  

(3 ; 3 + 4) = 9/2 a 
(3; 3 + 2,2)  = - 9/2qa2 
(3; 3 + 3,3)  = 1 
(3; 4 + 3) = 9(q - 2)/qa4 
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